Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Arch Biochem Biophys ; 749: 109792, 2023 11.
Article En | MEDLINE | ID: mdl-37863349

Phenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction. Although Phe has been widely demonstrated to be involved in PKU neurotoxicity, the mechanisms responsible for the CNS injury are still not fully known. In this work, we evaluated markers of neurodegeneration, namely BDNF (brain-derived neurotrophic factor), PAI-1 total (Plasminogen activator inhibitor-1 total), Cathepsin D, PDGF AB/BB (platelet-derived growth factor), and NCAM (neuronal adhesion molecule) in plasma of PKU patients at early and late diagnosis and under treatment. We found decreased Phe levels and increased L-car concentrations in PKU patients treated with L-car compared to the other groups, indicating that the proposed treatment was effective. Furthermore, we found increased BDNF levels in the patients under treatment compared to patients at early diagnosis, and a positive correlation between BDNF and L-car and a negative correlation between BDNF and Phe. Our results may indicate that in PKU patients treated with L-car there is an attempt to adjust neuronal plasticity and recover the damage suffered, reflecting a compensatory response to brain injury.


Carnitine , Phenylketonurias , Humans , Brain-Derived Neurotrophic Factor , Phenylketonurias/drug therapy , Dietary Supplements , Antioxidants , Phenylalanine , Becaplermin
2.
Cell Biochem Funct ; 41(4): 490-500, 2023 Jun.
Article En | MEDLINE | ID: mdl-37170672

Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. This study evaluated the effect caused by exposure time to high Phe levels in PKU patients at early and late diagnosis, through pro- and anti-inflammatory cytokines, as well as the L-car effect in patients under treatment. It was observed that there was a decrease in phenylalanine levels in treated patients compared to patients at diagnosis, and an increase in L-car levels in the patients under treatment. Inverse correlation between Phe versus L-car and nitrate plus nitrite versus L-car in PKU patients was also showed. We found increased proinflammatory cytokines levels: interleukin (IL)-1ß, interferons (IFN)-gamma, IL-2, tumor necrosis factor (TNF)-alpha, IL-8 and IL-6 in the patients at late diagnosis compared to controls, and IL-8 in the patients at early diagnosis and treatment compared to controls. Increased IL-2, TNF-alpha, IL-6 levels in the patients at late diagnosis compared to early diagnosis were shown, and reduced IL-6 levels in the treated patients compared to patients at late diagnosis. Moreover, it verified a negative correlation between IFN-gamma and L-car in treated patients. Otherwise, it was observed that there were increased IL-4 levels in the patients at late diagnosis compared to early diagnosis, and reduction in treated patients compared to late diagnosed patients. In urine, there was an increase in 8-isoprostane levels in the patients at diagnosis compared to controls and a decrease in oxidized guanine species in the treated patients compared to the diagnosed patients. Our results demonstrate for the first time in literature that time exposure to high Phe concentrations generates a proinflammatory status, especially in PKU patients with late diagnosis. A pro-oxidant status was verified in not treated PKU patients. Our results demonstrate the importance of early diagnosis and prompt start of treatment, in addition to the importance of L-car supplementation, which can improve cellular defense against inflammation and oxidative damage in PKU patients.


Cytokines , Phenylketonurias , Infant, Newborn , Humans , Phenylalanine , Delayed Diagnosis , Interleukin-2 , Interleukin-6 , Interleukin-8 , Carnitine/pharmacology , Phenylketonurias/diagnosis , Phenylketonurias/drug therapy , Phenylketonurias/urine , Tumor Necrosis Factor-alpha
3.
Metab Brain Dis ; 38(2): 507-518, 2023 Feb.
Article En | MEDLINE | ID: mdl-36447062

Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of ß-cyclodextrin (ß-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of ß-CD to reduce cholesterol in fibroblasts from NPC1 patients. ß-CD was used in its free and nanoparticulate form. We also evaluated the ß-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing ß-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining ß-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free ß-CD. The results obtained are promising regarding the combined use of ß-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.


Niemann-Pick Disease, Type C , beta-Cyclodextrins , Animals , Niemann-Pick Disease, Type C/genetics , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/therapeutic use , beta-Cyclodextrins/metabolism , Oxidation-Reduction , Mitochondria/metabolism , Cholesterol/metabolism
4.
Int J Dev Neurosci ; 82(8): 772-788, 2022 Dec.
Article En | MEDLINE | ID: mdl-36129623

Urea cycle disorders (UCD) are a group of genetic diseases caused by deficiencies in the enzymes and transporters involved in the urea cycle. The impairment of the cycle results in ammonia accumulation, leading to neurological dysfunctions and poor outcomes to affected patients. The aim of this study is to investigate and describe UCD patients' principal clinical and biochemical presentations to support professionals on urgent diagnosis and quick management, aiming better outcomes for patients. We explored medical records of 30 patients diagnosed in a referral center from Brazil to delineate UCD clinical and biochemical profile. Patients demonstrated a range of signs and symptoms, such as altered levels of consciousness, acute encephalopathy, seizures, progressive loss of appetite, vomiting, coma, and respiratory distress, in most cases combined with high levels of ammonia, which is an immediate biomarker, leading to a UCD suspicion. The most prevalent UCD detected were ornithine transcarbamylase deficiency, followed by citrullinemia type 1, hyperargininemia, carbamoyl phosphate synthase 1 deficiency, and argininosuccinic aciduria. Clinical symptoms were highly severe, being the majority developmental and neurological disabilities, with 20% of death rate. Laboratory analysis revealed high levels of ammonia (mean ± SD: 860 ± 470 µmol/L; reference value: ≤80 µmol/L), hypoglycemia, metabolic acidosis, and high excretion of orotic acid in the urine (except in carbamoyl phosphate synthetase 1 [CPS1] deficiency). We emphasize the need of urgent identification of UCD clinical and biochemical conditions, and immediate measurement of ammonia, to enable the correct diagnosis and increase the chances of patients' survival, minimizing neurological and psychomotor damage caused by hepatic encephalopathy.


Hepatic Encephalopathy , Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Urea Cycle Disorders, Inborn , Humans , Hyperammonemia/complications , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Hepatic Encephalopathy/complications , Hepatic Encephalopathy/diagnosis , Ammonia , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics , Ornithine Carbamoyltransferase Deficiency Disease/complications , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/genetics
5.
Metab Brain Dis ; 36(7): 1957-1968, 2021 10.
Article En | MEDLINE | ID: mdl-34216350

Although phenylalanine (Phe) is known to be neurotoxic in phenylketonuria (PKU), its exact pathogenetic mechanisms of brain damage are still poorly known. Furthermore, much less is known about the role of the Phe derivatives phenylacetic (PAA), phenyllactic (PLA) and phenylpyruvic (PPA) acids that also accumulate in this this disorder on PKU neuropathology. Previous in vitro and in vivo studies have shown that Phe elicits oxidative stress in brain of rodents and that this deleterious process also occurs in peripheral tissues of phenylketonuric patients. In the present study, we investigated whether Phe and its derivatives PAA, PLA and PPA separately or in combination could induce reactive oxygen species (ROS) formation and provoke DNA damage in C6 glial cells. We also tested the role of L-carnitine (L-car), which has been recently considered an antioxidant agent and easily cross the blood brain barrier on the alterations of C6 redox status provoked by Phe and its metabolites. We first observed that cell viability was not changed by Phe and its metabolites. Furthermore, Phe, PAA, PLA and PPA, at concentrations found in plasma of PKU patients, provoked marked DNA damage in the glial cells separately and when combined. Of note, these effects were totally prevented (Phe, PAA and PPA) or attenuated (PLA) by L-car pre-treatment. In addition, a potent ROS formation also induced by Phe and PAA, whereas only moderate increases of ROS were caused by PPA and PLA. Pre-treatment with L-car also prevented Phe- and PAA-induced ROS generation, but not that provoked by PLA and PPA. Thus, our data show that Phe and its major metabolites accumulated in PKU provoke extensive DNA damage in glial cells probably by ROS formation and that L-car may potentially represent an adjuvant therapeutic agent in PKU treatment.


Brain Injuries , Phenylketonurias , Brain Injuries/drug therapy , Carnitine/pharmacology , Carnitine/therapeutic use , Humans , Keto Acids/pharmacology , Oxidative Stress , Phenylalanine/pharmacology , Phenylalanine/therapeutic use
6.
Clin. biomed. res ; 38(1): 50-57, 2018.
Article En | LILACS | ID: biblio-994866

Introduction: Homocysteine (Hcy) tissue accumulation occurs in a metabolic disease characterized biochemically by cystathionine ß-synthase (CBS) deficiency and clinically by mental retardation, vascular problems, and skeletal abnormalities. Previous studies indicate the occurrence of DNA damage secondary to hyperhomocysteinemia and it was observed that DNA damage occurs in leukocytes from CBS-deficient patients. This study aimed to investigate whether an oxidative mechanism could be involved in DNA damage previously found and investigated the in vitro effect of N-acety-L-cysteine (NAC) on DNA damage caused by high Hcy levels. Methods: We evaluated a biomarker of oxidative DNA damage in the urine of CBS­deficient patients, as well as the in vitro effect of NAC on DNA damage caused by high levels of Hcy. Moreover, a biomarker of lipid oxidative damage was also measured in urine of CBS deficient patients. Results: There was an increase in parameters of DNA (8-oxo-7,8-dihydro-2'- deoxyguanosine) and lipid (15-F2t-isoprostanes levels) oxidative damage in CBS-deficient patients when compared to controls. In addition, a significant positive correlation was found between 15-F2t-isoprostanes levels and total Hcy concentrations. Besides, an in vitro protective effect of NAC at concentrations of 1 and 5 mM was observed on DNA damage caused by Hcy 50 µM and 200 µM. Additionally, we showed a decrease in sulfhydryl content in plasma from CBS-deficient patients when compared to controls. Discussion: These results demonstrated that DNA damage occurs by an oxidative mechanism in CBS deficiency together with lipid oxidative damage, highlighting the NAC beneficial action upon DNA oxidative process, contributing with a new treatment perspective of the patients affected by classic homocystinuria.


Humans , Female , Child , Adolescent , Adult , Young Adult , Acetylcysteine/pharmacology , DNA Damage , Oxidative Stress , Cystathionine/metabolism , Deoxyguanosine/urine , Homocystinuria/genetics , Antioxidants/pharmacology , Biomarkers/urine , Case-Control Studies , Creatinine/urine , Comet Assay , Cystathionine/biosynthesis , Cystathionine/blood , Isoprostanes/analysis , Deoxyguanosine/analogs & derivatives , Homocysteine/blood , Homocystinuria/blood
7.
Cell Mol Neurobiol ; 37(8): 1477-1485, 2017 Nov.
Article En | MEDLINE | ID: mdl-28258516

Homocystinuria is an inborn error of amino acid metabolism caused by deficiency of cystathionine ß-synthase (CBS) activity, biochemically characterized by homocysteine (Hcy) and methionine (Met) accumulation in biological fluids and high urinary excretion of homocystine. Clinical manifestations include thinning and lengthening of long bones, osteoporosis, dislocation of the ocular lens, thromboembolism, and mental retardation. Although the pathophysiology of this disease is poorly known, the present review summarizes the available experimental findings obtained from patients and animal models indicating that oxidative stress may contribute to the pathogenesis of homocystinuria. In this scenario, several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in individuals affected by this disease. Furthermore, markers of lipid, protein, and DNA oxidative damage have been reported to be increased in blood, brain, liver, and skeletal muscle in animal models studied and in homocystinuric patients, probably as a result of increased free radical generation. On the other hand, in vitro and in vivo studies have shown that Hcy induces reactive species formation in brain, so that this major accumulating metabolite may underlie the oxidative damage observed in the animal model and human condition. Taken together, it may be presumed that the disruption of redox homeostasis may contribute to the tissue damage found in homocystinuria. Therefore, it is proposed that the use of appropriate antioxidants may represent a novel adjuvant therapy for patients affected by this disease.


Cystathionine beta-Synthase/deficiency , Disease Models, Animal , Homocystinuria/metabolism , Oxidative Stress/physiology , Animals , Antioxidants/metabolism , Brain/metabolism , Homocystinuria/pathology , Humans
8.
Article En | MEDLINE | ID: mdl-26046974

Fabry disease (FD) is a lysosomal storage disorder associated with loss of activity of the enzyme α-galactosidase A. In addition to accumulation of α-galactosidase A substrates, other mechanisms may be involved in FD pathophysiology, such as inflammation and oxidative stress. Higher levels of oxidative damage to proteins and lipids in Fabry patients were previously reported. However, DNA damage by oxidative species in FD has not yet been studied. We investigated basal DNA damage, oxidative DNA damage, DNA repair capacity, and reactive species generation in Fabry patients and controls. To measure oxidative damage to purines and pyrimidines, the alkaline version of the comet assay was used with two endonucleases, formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). To evaluate DNA repair, a challenge assay with hydrogen peroxide was performed. Patients presented significantly higher levels of basal DNA damage and oxidative damage to purines. Oxidative DNA damage was induced in both DNA bases by H2O2 in patients. Fabry patients presented efficient DNA repair in both assays (with and without endonucleases) as well as significantly higher levels of oxidative species (measured by dichlorofluorescein content). Even if DNA repair be induced in Fabry patients (as a consequence of continuous exposure to oxidative species), the repair is not sufficient to reduce DNA damage to control levels.


DNA Damage , DNA Repair , Fabry Disease/genetics , Hydrogen Peroxide/metabolism , Adult , Aged , Fabry Disease/pathology , Female , Humans , Male , Middle Aged , Oxidation-Reduction , Reactive Oxygen Species , Young Adult
...